

A *Ka*-Band Power Amplifier Based on a Low-Profile Slotted-Waveguide Power-Combining/Dividing Circuit

Xin Jiang, Li Liu, Sean C. Ortiz, *Student Member, IEEE*, Rizwan Bashirullah, and Amir Mortazawi

Abstract—In this paper, a *Ka*-band power amplifier based on a resonant slotted-waveguide-to-microstrip power-dividing/combining circuit is presented. The advantages of this structure are its low profile, ease of fabrication, as well as its potential for high power-combining efficiency. In addition, efficient heat sinking of monolithic microwave integrated circuit (MMIC) devices is achieved. A slotted-waveguide power amplifier using eight MMIC amplifiers was designed and fabricated. The measured power-combining efficiency at 33 GHz is 72%. In addition, simulation results predicting the performance degradation of the slotted-waveguide power amplifier due to multiple device failure are presented.

Index Terms—*Ka*-band, power amplifier, power combining, slotted waveguide.

I. INTRODUCTION

CONVENTIONAL hybrid-type power-combining circuits, such as the Wilkison power divider, Lange coupler, and branch-line coupler, suffer from low power efficiency at millimeter frequencies [1]. Several techniques, such as quasi-optical and waveguide-based spatial power-combining approaches, have been proposed to address this issue [2]–[6]. At *Ka*-band, the waveguide-based 1×2 and 2×2 power-amplifier modules were reported in [6] with a power-combining efficiency of 83%. This paper presents the design and experimental results for a *Ka*-band slotted-waveguide power amplifier. The waveguide structure used in this design has several advantages, such as high efficiency, low profile, low complexity, and efficient heat sinking for active devices. In our previous design, a waveguide power combiner at *X*-band was demonstrated with a power-combining efficiency of 88% [7]. In this paper, besides the experimental results for the eight-device *Ka*-band power amplifier, simulation results that predict the performance degradation of the amplifier due to multiple device failure are also presented.

II. DESIGN

As illustrated in Fig. 1, the circuit consists of input and output slotted waveguides coupled to microstrip lines and *Ka*-band

Manuscript received September 17, 2001; revised July 1, 2002.

X. Jiang and A. Mortazawi are with the Electrical Engineering and Computer Science Department, The University of Michigan at Ann Arbor, Ann Arbor, MI 48109-2122 USA.

L. Liu and R. Bashirullah are with the Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC 27695-7914 USA.

S. C. Ortiz was with the Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC 27695-7914 USA. He is now with the Harris Corporation, Melbourne, FL 32919 USA.

Digital Object Identifier 10.1109/TMTT.2002.806927

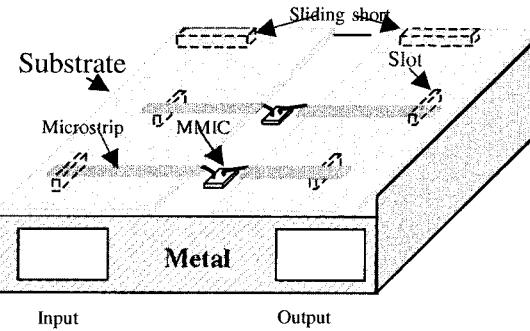


Fig. 1. Topology of the eight-device *Ka*-band waveguide power amplifier. (Only the last two sections of the dividing/combing structure is shown.)

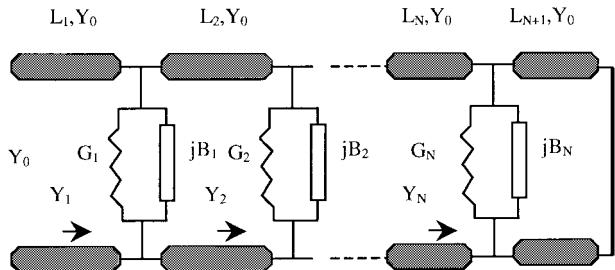


Fig. 2. Equivalent circuit of an N -way resonant power-dividing/combining structure.

monolithic microwave integrated circuit (MMIC) amplifiers. The input power is divided into N ways through identical slots on the broadwall of the input waveguide. These slots are separated by half-guide wavelength to achieve an equal power division. The input and output ports of the slotted-waveguide power amplifier can either be on the same or the opposite sides of the slotted waveguides, with the other two waveguide ports terminated with shorts. This offers more flexibility in feeding the circuits without degenerating the performance.

Although designing the entire multiple ports' dividing/combining structure at millimeter-wave frequencies is possible through an iterative approach based on full-wave electromagnetic (EM) simulations, such an approach can be very time consuming due to the large size of the whole structure in terms of wavelength. Since all slot-to-microstrip coupling units are identical, a better solution is to use a distributed equivalent circuit for the entire structure based on single waveguide-to-microstrip coupler design with desired equivalent admittance. As shown in Fig. 2, the longitudinal waveguide slot is modeled as a shunt element along a transmission line [8]–[10]. The

Fig. 3. Geometry of the eight-way dividing/combining structure and its port numbering [W_s : 0.58 mm, L_s : 5.80 mm, L_o : 1.45 mm, W_m : 0.61 mm (50Ω)].

conductance G_k and susceptance B_k represent the discontinuity due to the k th slot. L_k ($k = 2, 3, \dots, N$) represents the distance between the center of the k th and $(k+1)$ th slot, and Y_0 is the TE_{10} -mode impedance for the waveguide. Assuming that the coupling between the adjacent slots is negligible, the admittance looking into each section of the waveguide is

$$Y_k = (G_k + jB_k) + Y_0 \frac{Y_{k+1} + jY_0 \tan(\beta L_{k+1})}{Y_0 + jY_{k+1} \tan(\beta L_{k+1})}, \quad k = 1, 2, \dots, N. \quad (1)$$

Perfect power dividing/combining requires uniform amplitude and phase between each dividing and combining unit [11], which can be achieved by placement of these identical slots along the waveguide with a spacing of $\lambda_g/2$. For each single slotted-waveguide to microstrip coupler, the design goal is to achieve the proper waveguide to microstrip coupling by adjusting the slot length, width, and its offset from the waveguide edge, as shown in Fig. 3. The entire dividing/combing circuit is then designed by cascading the N slotted-waveguide couplers.

Based on the design procedure discussed, an eight-way *Ka*-band passive power divider was designed. A sliding short was used to terminate the waveguide end. The signal is coupled to microstrip lines placed directly above the slots, where the top wall of the waveguide serves as the ground plane for the microstrip lines. The open-ended microstrip lines extend a quarter-wavelength beyond the center of the slots to provide a virtual short at the slots. To accommodate the slots in a compact space, they are alternately positioned with respect to waveguide walls. In order to obtain a better impedance match between waveguide and microstrip lines, a reduced height WR-28 waveguide ($7.112 \text{ mm} \times 1.778 \text{ mm}$) was used. The thickness of the waveguide's top wall is 1.016 mm (slot thickness). Rogers TMM6 with a dielectric constant of 6.0 and thickness of 0.381 mm was used as the substrate for the microstrip line. Other dimensions are given in Fig. 3.

III. SIMULATION AND EXPERIMENTAL RESULTS

The S -parameters of the eight-way dividing circuit part were simulated using Agilent HFSS. Equal power division ($-9.25 \pm 0.55 \text{ dB}$) is achieved at approximately 32 GHz [see Fig. 4(a)], which is close to the expected value of -9 dB . Also, the phases of the coupling coefficients are found to be uniform [see Fig. 4(b)]. A passive divider/combiner circuit was built by

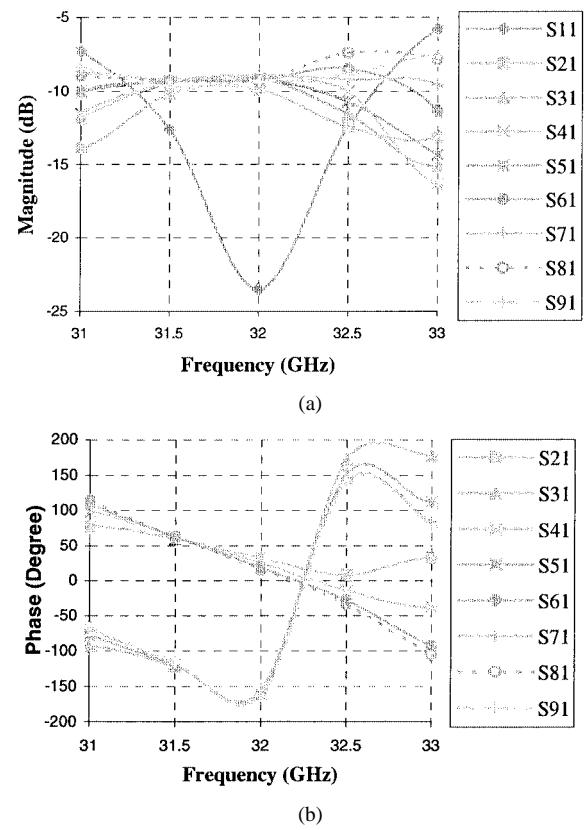


Fig. 4. Simulated results of the eight-way power divider/combiner. (a) Magnitude. (b) Phase.

placing two identical circuits back to back. At 32.5 GHz, the measured insertion loss of 1.8 dB was achieved with a return loss of 13 dB (Fig. 5), which indicates a maximum expected power-combining efficiency of 81% for the combining circuit. At 33 GHz, the measured insertion loss is 2.4 dB, corresponding to a power-combining efficiency of 76%. A slight frequency shift was noted between the measured and HFSS simulation results.

Based on the passive power dividing/combining circuit, the *Ka*-band slotted-waveguide power amplifier using eight Triquint TGA1073A MMIC chips was fabricated and measured. The amplifier has over 17 dB of small-signal gain and over 10 dB of return loss at 33 GHz [see Fig. 6(a)]. The measured 3-dB bandwidth is 1.25 GHz ($f_L = 32.42 \text{ GHz}$, $f_H = 33.67 \text{ GHz}$).

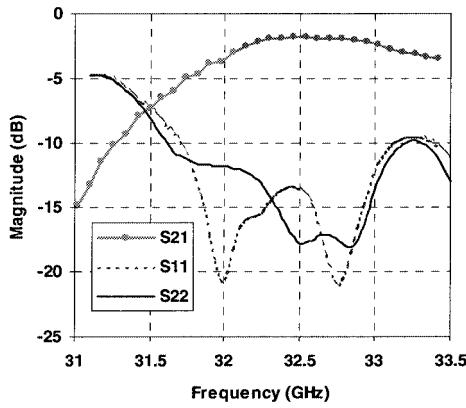


Fig. 5. Measurement results of the passive power divider and combiner placed back to back.

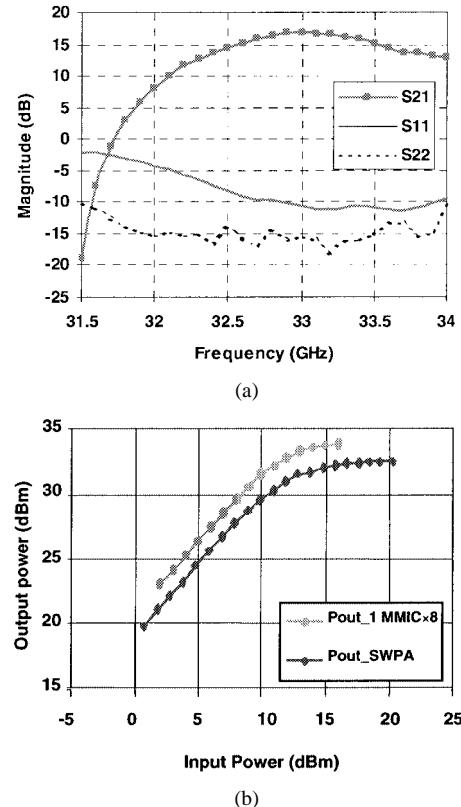


Fig. 6. (a) Measured S -parameters of the slotted-waveguide power amplifier. (b) Single MMIC output power $\times 8$ and the measured output power of the eight-device slotted-waveguide power amplifier.

In addition, the power compression for the amplifier has been measured [see Fig. 6(b)]. At 33 GHz, this eight-device slotted-waveguide power amplifier provides an output power of 31.6 dBm at 1-dB compression. Since the measured single MMIC chip output-power level ($P_{\text{out}@1 \text{ dB}}$) is 24 dBm, the ideal eight-device power combiner would provide output power of 33 dBm. This translates into the power-combining efficiency of approximately 72%, close to the 76%, the expected value based on the passive divider/combiner measurement at 33 GHz. The MMICs are biased at 6 V with a total dc current of 1.76 A. The overall power-added efficiency (PAE) is approximately 13.7% at 33 GHz. We believe it is possible to achieve a better

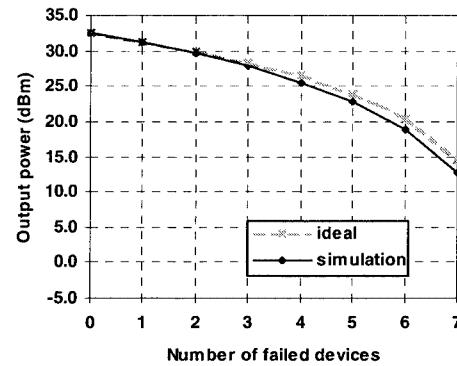


Fig. 7. Simulated output power of the slotted-waveguide power amplifier versus number of failed devices.

power-combing efficiency by reducing the length of the microstrip lines in the existing circuits and through more accurate construction of the waveguide power divider/combiner.

By modeling MMIC failure as the open, short, and matched load for different failure mechanisms [12], the performance degradation of the slotted-waveguide power amplifier as a function of the number of failed devices can be predicted. The power drop is slightly dependent on the location of the faulty device, and the matched case scenario has a more pronounced impact on the slotted-waveguide power-amplifier output-power level. However, as the number of failed devices increases, the output-power drop becomes less sensitive to short, open, and matched conditions representing various failures. Fig. 7 shows the simulated output power of the slotted-waveguide power amplifier as a function of the number of failed devices. (The faulty devices are treated as match and their locations are arbitrarily chosen.) It can be seen as follows that the simulated output power P for the match case is very close to the ideal case predicted in [12]:

$$P = P_0(1 - f)^2 \quad (2)$$

where f is the fraction of the failed device, and P_0 is the output power when all devices work. This further demonstrates the potential utility of the slotted-waveguide power amplifier for low loss and reliable millimeter-wave power combining.

IV. CONCLUSIONS

An eight-device Ka -band power amplifier has been designed based on a resonant slotted-waveguide power-dividing/combing structure. Low loss and high power-combining efficiency have been achieved at millimeter-wave frequencies using this power-combining method. Meanwhile, this design can provide sufficient heat sinking for high-power solid-state devices. The power amplifier developed in this study provided 17 dB of small-signal gain with return loss greater than 10 dB at 33 GHz. A power-combining efficiency of 72% was achieved from this eight-device power amplifier at 33 GHz.

REFERENCES

- [1] K. Chang and C. Sun, "Millimeter-wave power-combining techniques," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-31, pp. 91–107, Dec. 1983.

- [2] S. Hollung, A. E. Cox, and Z. B. Popović, "A bi-directional quasi-optical lens amplifier," *IEEE Trans. Microwave Theory Tech.*, vol. 45, pp. 2352–2357, Dec. 1997.
- [3] S. Ortiz, J. Hubert, L. Mirth, E. Schlech, and A. Mortazawi, "A high-power *Ka*-band quasi-optical amplifier array," *Trans. Microwave Theory Tech.*, vol. 50, pp. 487–494, Feb. 2002.
- [4] A. Sanada, K. Fukui, and S. Nogi, "A waveguide type power divider/combiner of double-ladder multi-port structure," *IEEE Trans. Microwave Theory Tech.*, vol. 42, pp. 1154–1161, July 1994.
- [5] N.-S. Cheng, P. Jia, D. B. Rensch, and R. A. York, "A 120-W *X*-band spatially combined solid-state amplifier," *IEEE Trans. Microwave Theory Tech.*, vol. 47, pp. 2557–2561, Dec. 1999.
- [6] J. Jeong, Y. Kwon, S. Lee, C. Cheon, and E. A. Sovero, "1.6- and 3.3-W power-amplifier modules at 24 GHz using waveguide-based power-combining structures," *IEEE Trans. Microwave Theory Tech.*, vol. 48, pp. 2700–2708, Dec. 2000.
- [7] R. Bashirullah and A. Mortazawi, "A slotted-waveguide power amplifier for spatial power-combining applications," *IEEE Trans. Microwave Theory Tech.*, vol. 48, pp. 1142–1147, July 2000.
- [8] L. G. Josefsson, "Analysis of longitudinal slots in rectangular waveguides," *IEEE Trans. Antennas Propagat.*, vol. AP-35, pp. 1351–1357, Dec. 1987.
- [9] R. S. Elliot and L. A. Kurtz, "The design of small slot arrays," *IEEE Trans. Antennas Propagat.*, vol. AP-26, pp. 214–219, Mar. 1978.
- [10] P. B. Katehi, "Dielectric-covered wave-guide longitude slots with finite wall thickness," *IEEE Trans. Antennas Propagat.*, vol. 38, pp. 1039–0145, July 1990.
- [11] M. S. Gupta, "Power combining efficiency and its optimization," in *Proc. Inst. Elect. Eng.*, vol. 3, June 1992, pp. 233–238.
- [12] D. B. Rutledge, N. Cheng, R. A. York, R. M. Weikle, II, and P. De Lisio, "Failures in power-combining arrays," *IEEE Trans. Microwave Theory Tech.*, vol. 47, pp. 1077–1082, July 1999.

Xin Jiang, photograph and biography not available at time of publication.

Li Liu, photograph and biography not available at time of publication.

Sean C. Ortiz (S'96) received the B.S.E.E. and M.S.E.E. degrees from the University of Central Florida, Orlando, in 1996 and 1998, respectively, and the Ph.D. degree in electrical engineering from North Carolina State University, Raleigh, in <19??>.

His research interests include quasi-optical power-combining amplifiers, electromagnetically hardened horns, and transmit–receive antennas. He is currently involved with phased-array antennas as well as reflector feed assemblies with the Harris Corporation, Melbourne, FL.

Dr. Ortiz is a member of the IEEE Microwave Theory and Techniques Society (IEEE MTT-S) and the IEEE Antennas and Propagation Society (IEEE AP-S).

Rizwan Bashirullah, photograph and biography not available at time of publication.

Amir Mortazawi received the B.S. degree in electrical engineering from the State University of New York, Stony Brook, in 1987, and the M.S. and Ph.D. degrees in electrical engineering from the University of Texas at Austin, in 1988 and 1990, respectively.

In 1990, he joined the University of Central Florida, Orlando, as an Assistant Professor, and was promoted to Associate Professor in 1995. In August 1998, he joined the North Carolina State University, as an Associate Professor of electrical engineering. In Fall 2001, he joined The University of Michigan

at Ann Arbor, as an Associate Professor. His research interests include millimeter-wave power-combining oscillators and amplifiers, quasi-optical techniques, frequency-agile materials, and nonlinear analysis of microwave circuits.

Dr. Mortazawi is co-chair of the IEEE MTT-16 Committee on Phased Arrays and chair of the IEEE Microwave Theory and Techniques Society (IEEE MTT-S) Technical Program Committee (TPC) on Active and Quasi-Optical Arrays. From 1998 to 2001, he was an associate editor for the IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION.